Diamond Geology and Exploration

Upper Mantle Structure Underlying the Diamondiferous Slave Craton from Teleseismic Body-Wave Tomography

Soapbox Wednesday, November 21, 2018 - 13:28 to 13:34 Theatre 3


C. Esteve (Presenting)
University of Ottawa

A.J. Schaeffer
University of Ottawa

P. Audet
University of Ottawa

Cratons are, by definition, the most tectonically stable and oldest parts of the continental lithosphere on Earth. The Archean Slave craton is located in the northwestern part of the Canadian Shield. The propensity of diamondiferous kimberlite pipes in the central Slave craton raises many questions regarding their structural environment and source. Here, we provide the most robust teleseismic P and S body wave tomography models over the Slave craton region based on 20,547 P-wave delay times, 6,140 direct S-wave delay times and 3,381 SKS delay times. The P-wave model reveals an alternating pattern of relative positive and negative anomalies over a fine broad scale region within the central Slave craton. Furthermore, the P-wave model revealed two fine structures located in the lithosphere beneath the Lac de Gras kimberlite cluster, with relatively slow anomalies (B - C) that extend from 75 km to 350 km depths with an apparent dip to the north. These relatively slow P- and S-wave anomalies are associated with metasomatised regions within the lithosphere. The S-wave model displays a slow S-wave anomaly lying from 300 km depth to the transition zone beneath the central Slave craton. This anomaly is located beneath the Lac de Gras kimberlite cluster. We suggest that this anomaly is not the cause of the actual kimberlites at the surface since last eruption occurred 75-45 Ma ago but may be related to a potential kimberlite magma ascent in the asthenosphere.